Hadean isotopic fractionation of xenon retained in deep silicates – Nature

  • Anders, E. & Owen, T. Mars and Earth: origin and abundance of volatiles. Science 198, 453–465 (1977).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Krummenacher, D., Merrihue, C. M., Pepin, R. O. & Reynolds, J. H. Meteoritic krypton and barium versus the general isotopic anomalies in xenon. Geochim. Cosmochim. Acta 26, 231–249 (1962).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Swindle, T. D., Caffee, M. W. & Hohenberg, C. M. Xenon and other noble gases in shergottites. Geochim. Cosmochim. Acta 50, 1001–1015 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ozima, M. & Podosek, F. A. Formation age of Earth from 129I/127I and 244Pu/238U systematics and the missing Xe. J. Geophys. Res. 104, 25493–25499 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Avice, G., Marty, B. & Burgess, R. The origin and degassing history of the Earth’s atmosphere revealed by Archean xenon. Nat. Commun. 8, 15455 (2017).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Dauphas, N. & Morbidelli, A. in Geochemical and Planetary Dynamical Views on the Origin of Earth’s Atmosphere and Oceans (eds Holland, H. D. & Turekian, K. K.) 115–234 (Elsevier, 2014).

  • Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hébrard, E. & Marty, B. Coupled noble gas-hydrocarbon evolution of the early Earth atmosphere upon solar UV irradiation. Earth Planet. Sci. Lett. 385, 40–48 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Zahnle, K. J., Gaseca, M. & Catling, D. C. Strange messenger: a new history of hydrogen on Earth, as told by xenon. Geochim. Cosmochim. Acta 244, 56–85 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dauphas, N. The dual origin of the terrestrial atmosphere. Icarus 165, 326–333 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bekaert, D. V., Broadley, M. W. & Marty, B. The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov–Gerasimenko. Sci. Rep. 10, 5796 (2020).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Marty, B. et al. Xenon isotopes in 67P/Churyumov–Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 50, 1110–1113 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Javoy, M. et al. The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Boyet, M. et al. Enstatite chondrites EL3 as building blocks for the Earth: the debate over the 146Sm–142Nd systematics. Earth Planet. Sci. Lett. 214, 427–442 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Sanloup, C. Noble gas reactivity in planetary interiors. Front. Phys. 8, 157 (2020).

    Article 

    Google Scholar 

  • Dewaele, A. et al. Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure. Nat. Chem. 8, 784–790 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stavrou, E. et al. Synthesis of xenon and iron-nickel intermetallic compounds at Earth’s core thermodynamic conditions. Phys. Rev. Lett. 120, 096001 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Crépisson, C., Blanchard, M., Lazzeri, M., Balan, E. & Sanloup, C. New constraints on Xe incorporation mechanisms in olivine from first-principles calculations. Geochim. Cosmochim. Acta 222, 146–155 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Probert, M. I. J. An ab initio study of xenon retention in α-quartz. J. Phys. Condens. Matter 22, 025501 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Crépisson, C. et al. The Xe-SiO2 system at moderate pressure and high temperature. Geochem. Geophys. Geosyst. 20, 992–1003 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Shcheka, S. S. & Keppler, H. The origin of the terrestrial noble-gas signature. Nature 490, 531–535 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Parai, R. & Mukhopadhyay, S. Xenon isotopic constraints on the history of volatile recycling into the mantle. Geochim. Cosmochim. Acta 560, 223–227 (2018).

    CAS 

    Google Scholar 

  • Krantz, J. A., Parman, S. W. & Kelley, S. P. Recycling of heavy noble gases by subduction of serpentinite. Earth Planet. Sci. Lett. 521, 120–127 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Moreira, M., Kunz, J. & Allègre, C. Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181 (1998).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hennecke, E. W. & Manuel, O. K. Noble gases in Hawaiian xenolith. Nature 257, 778–780 (1975).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Poreda, R. J. & Farley, K. A. Rare gases in Samoan xenoliths. Earth Planet. Sci. Lett. 113, 129–144 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Czuppon, G., Matsumoto, T., Handler, M. R. & Matsuda, J.-I. Noble gases in spinel peridotite xenoliths from Mt Quincan, North Queensland, Australia: undisturbed MORB-type noble gases in the subcontinental lithospheric mantle. Chem. Geol. 266, 19–28 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kuroda, P. K., Sherrill, R. D. & Jackson, K. C. Abundances and isotopic compositions of rare gases in granites. Geochem. J. 11, 75–90 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Palma, R. L., Rao, M. N., Rowe, M. W. & Koeberl, C. Krypton and xenon fractionation in North American tektites. Meteor. Planet. Sci. 32, 9–14 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bekaert, D. V., Avice, G., Marty, B. & Henderson, B. Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon. Geochim. Cosmochim. Acta 218, 114–1315 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Drescher, J., Kirsten, T. & Schäfer, K. The rare gas inventory of the continental crust, recovered by the KTB Continental Deep Drilling project. Earth Plan. Sci. Lett. 154, 247–263 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Elkins-Tanton, L. T., Burgess, S. & Yin, Q.-Z. The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326–336 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Frossard, P., Boyet, M., Bouvier, A., Hammouda, T. & Monteux, J. Evidence for anorthositic crust formed on an inner solar system planetesimal. Geochem. Persp. Lett. 11, 28–32 (2019).

    Article 

    Google Scholar 

  • Bouvier, L. C. et al. Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558, 586–589 (2018).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim.Cosmochim. Acta 70, 164–191 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Harrison, T. M., Schmitt, A. K., McCulloch, M. T. & Lovera, O. M. Early (≥4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett. 268, 476–486 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Erkaev, N. V. et al. Escape of the martian protoatmosphere and initial water inventory. Planet. Space Sci. 98, 106–119 (2014).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Tucker, J. M. & Mukhopadhyay, S. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jambon, A., Weber, H. & Braun, O. Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600 °C. Geochemical implications. Geochim. Cosmochim. Acta 50, 401–408 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Guillot, B. & Sator, N. Noble gases in high-pressure silicate liquids: a computer simulation study. Geochim. Cosmochim. Acta 80, 51–69 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Brož, M., Chrenko, O., Nesvorný, D. & Dauphas, N. Early terrestrial planet formation by torque-driven convergent migration of planetary embryos. Nat. Astron. 5, 898–902 (2021).

    ADS 
    Article 

    Google Scholar 

  • Schlichting, H. E. & Mukhopadhyay, S. Atmosphere impact losses. Space Sci. Rev. 214, 34 (2018).

    ADS 
    Article 

    Google Scholar 

  • Harper, C. L. Evidence for 92gNb in the early solar system and evaluation of a new p-process cosmochronometer from 92gNb/92Mo. Astrophys. J. 466, 437–456 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jaupart, E., Charnoz, S. & Moreira, M. Primordial atmosphere incorporation in planetary embryos and the origin of neon in terrestrial planets. Icarus 293, 199–205 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Crépisson, C. et al. Kr environment in feldspathic glass and melt: a high pressure, high temperature X-ray absorption study. Chem. Geol. 493, 525–531 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Kohara, S. et al. Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses. Proc. Natl Acad. Sci. USA 108, 14780–14785 (2011).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Holland, G., Cassidy, M. & Ballentine, C. J. Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–1525 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Heber, V. S., Brooker, R. A., Kelley, S. P. & Wood, B. J. Crystal-melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim. Cosmochim. Acta 71, 1041–1061 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sanloup, C., Schmidt, B. C., Gudfinnsson, G., Dewaele, A. & Mezouar, M. Xenon and argon: a contrasting behavior in olivine at depth. Geochim. Cosmochim. Acta 75, 6271–6284 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Péron, S. & Moreira, M. Onset of volatile recycling into the mantle determined by xenon anomalies. Geochem. Persp. Lett. 9, 21–25 (2018).

    Article 

    Google Scholar 

  • Tolstikhin, I. N. & O’nions, R. K. The Earth’s missing xenon: a combination of early degassing and of rare gas loss from the atmosphere. Chem. Geol. 115, 1–6 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yokochi, R. & Marty, B. Geochemical constraints on mantle dynamics in the Hadean. Earth Planet. Sci. Lett. 238, 17–30 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sano, Y., Marty, B. & Burnard, P. in Noble Gases in the Atmosphere (ed. Burnard, P.) 17–31 (Springer-Verlag, 2013).

  • Crépisson, C. ‘Missing Xenon’: Experimental and Theoretical Study of Xe Storage in Crustal and Upper Mantle Minerals. Ph.D. thesis, Sorbonne Univ. (2018).

  • Prouteau, G., Scaillet, B., Pichavant, M. & Maury, R. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197–200 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Boettcher, S. L., Guo, Q. & Montana, A. A simple device for loading gases in high-pressure experiments. Am. Mineral. 74, 1383–1384 (1989).

    CAS 

    Google Scholar 

  • Horlait, D. et al. A new thermo-desorption laser-heating setup for studying noble gases diffusion and release from materials at high temperatures. Rev. Sci. Instr. 92, 124102 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bevington, P. R. & Robinson, D. K. Data Reduction and Error Analysis for Physical Sciences 3rd edn (McGraw-Hill, 2003).

  • Be the first to comment

    Leave a Reply