Multiview confocal super-resolution microscopy – Nature

  • 1.

    Pawley, JB (ed.) Handbook of Biological Confocal Microscopy 3rd edn (Springer, 2006).

  • 2.

    Laissue, PP, Alghamdi, RA, Tomancak, P., Reynaud, EG, Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).

    CAS Article Google Scholar

  • 3.

    Baumgart, E. & Kubitscheck, U. Scanned light sheet microscopy with confocal slit detection. Opt. Express 20, 21805–21814 (2012).

    ADS Article Google Scholar

  • 4.

    Kumar, A. et al. Using stage- and slit-scanning to improve contrast and optical sectioning in dual-view inverted light-sheet microscopy (diSPIM). Biol. Bull. 231, 26–39 (2016).

    CAS Article Google Scholar

  • 5.

    Guo, M. et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat. Biotechnol. 38, 1337–1346 (2020).

    CAS Article Google Scholar

  • 6.

    Lucy, LB An iterative technique for the rectification of observed distributions. Astron. J. 79, 745–754 (1974).

    ADS Article Google Scholar

  • 7.

    Richardson, WH. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972).

    ADS Article Google Scholar

  • 8.

    Descloux, A., Grußmayer, KS & Radenovic, A. Parameter-free image resolution estimation based on decorrelation analysis. Nat. Methods 16, 918–924 (2019).

    CAS Article Google Scholar

  • 9.

    Chen, F., Tillberg, P. & Boyden, ES Expansion microscopy. Science 347, 543–548 (2015).

    ADS CAS Article Google Scholar

  • 10.

    He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask R-CNN. In 2017 IEEE Conf. Computer Vision (ICCV) (eds Ikeuchi, K. et al.) 2980–2988 (2017).

  • 11.

    Lin, T.-Y. et al. Microsoft COCO: common objects in context. In Computer Vision – CCV 2014 (eds Fleet, D. et al.) 740–755 (Springer, 2014).

  • 12.

    Kosmach, A. et al. Monitoring mitochondrial calcium and metabolism in the beating MCU-KO heart. Cell Rep. 37, 109846 (2021).

  • 13.

    Wu, Y. et al. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans, Proc. Natl Acad. Sci. USA 108, 17708–17713 (2011).

    ADS CAS Article Google Scholar

  • 14.

    Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).

    CAS Article Google Scholar

  • 15.

    Sulston, JE, Schierenberg, E., White, JG & Thomson, JN The embryonic cell lineage of the nematode Caenorhabditis elegans, Dev. Biol. 100, 64–119 (1983).

    CAS Article Google Scholar

  • 16.

    Wu, Y. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. 31, 1032–1038 (2013).

    CAS Article Google Scholar

  • 17.

    Kumar, A. et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat. Protoc. 9, 2555–2573 (2014).

    CAS Article Google Scholar

  • 18.

    Duncan, LH et al. Isotropic light-sheet microscopy and automated cell lineage analyzes to catalogue Caenorhabditis elegans Embryogenesis with subcellular resolution. J. Vis. Exp. 148, e59533 (2019).

    Google Scholar

  • 19.

    Towlson, EK, Vértes, PE, Ahnert, SE, Schafer, WR & Bullmore, ET The rich club of the C. elegans neuronal connectome. J. Neurosci. 33, 6380–6387 (2013).

    CAS Article Google Scholar

  • 20.

    White, JG, Southgate, E., Thomson, JN & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans, Phil. Trans. R. Soc. B 314, 1–340 (1986).

    ADS CAS PubMed Google Scholar

  • 21.

    Armenti, ST, Lohmer, LL, Sherwood, DR & Nance, J. Repurposing an endogenous degradation system for rapid and targeted depletion of C. elegans proteins. Development 141, 4640–4647 (2014).

    CAS Article Google Scholar

  • 22.

    Wu, Y. & Shroff, H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Methods 15, 1011–1019 (2018); correction 16, 205 (2019).

    CAS Article Google Scholar

  • 23.

    Fischer, RS, Gardel, ML, Ma, X., Adelstein, RS & Waterman, CM Local cortical tension by myosin II guides 3D endothelial cell branching. Curr Biol. 19, 260–265 (2009).

    CAS Article Google Scholar

  • 24.

    York, AG et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods 10, 1122–1126 (2013).

    CAS Article Google Scholar

  • 25.

    Gambarotto, D. et al. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat. Methods 16, 71–74 (2019).

    CAS Article Google Scholar

  • 26.

    Tabara, H., Motohashi, T. & Kohara, Y. A multi-well version of in situ hybridization on whole mount embryos of Caenorhabditis elegans, Nucleic Acids Res. 24, 2119–2124 (1996).

    CAS Article Google Scholar

  • 27.

    Chen, J. et al. Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. Nat. Methods 18, 678–687 (2020).

    Article Google Scholar

  • 28.

    Wu, Y. et al. Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy. Optica 3, 897–910 (2016).

    ADS CAS Article Google Scholar

  • 29.

    Barth, R., Bystricky, K. & Shaban, HA Coupling chromatin structure and dynamics by live super-resolution imaging. Sci. Adv. (2020).

    Article PubMed PubMed Central Google Scholar

  • 30.

    Han, X. et al. A polymer index-matched to water enables diverse applications in fluorescence microscopy. Lab Chip 21, 1549–1562 (2021).

    CAS Article Google Scholar

  • 31.

    Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article Google Scholar

  • 32.

    Gustafsson, MGL et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008).

    ADS CAS Article Google Scholar

  • 33.

    Rego, EH et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl Acad. Sci. USA 109, E135–E143 (2011).

    Article Google Scholar

  • 34.

    Krüger, J.-R., Keller-Findeisen, J., Geisler, C. & Egner, A. Tomographic STED microscopy. Biomed. Opt. Express 11, 3139–3163 (2020).

    Article Google Scholar

  • 35.

    Wu, Y. et al. Reflective imaging improves spatiotemporal resolution and collection efficiency in light sheet microscopy. Nat. Commun. 8, 1452 (2017).

    ADS Article Google Scholar

  • 36.

    Shroff, H., York, A., Giannini, JP & Kumar, A. Resolution enhancement for line scanning excitation microscopy systems and methods. US patent 10,247,930 (2019).

  • 37.

    Wang, H. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16, 103–110 (2019).

    CAS Article Google Scholar

  • 38.

    Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374–380 (2017).

    CAS Article Google Scholar

  • 39.

    Royer, LA et al. Adaptive light-sheet microscopy for long-term, high-resolution imaging in live organisms. Nat. Biotechnol. 34, 1267–1278 (2016).

    CAS Article Google Scholar

  • 40.

    Liu, T.-L. et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018).

    ADS Article Google Scholar

  • 41.

    Zheng, W. et al. Adaptive optics improves multiphoton super-resolution imaging. Nat. Methods 14, 869–872 (2017).

    CAS Article Google Scholar

  • Be the first to comment

    Leave a Reply