Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires – Nature

  • 1.

    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    ADS 

    Google Scholar 

  • 2.

    Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    ADS 

    Google Scholar 

  • 3.

    Huang, Y., Wu, S. & Kaplan, J. O. Sensitivity of global wildfire occurrences to various factors in the context of global change. Atmos. Environ. 121, 86–92 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).

    ADS 

    Google Scholar 

  • 5.

    Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4, 1321–1326 (2020).

    Google Scholar 

  • 6.

    Kablick III, G. P., Allen, D. R., Fromm, M. D. & Nedoluha, G. E. Australian PyroCb smoke generates synoptic-scale stratospheric anticyclones. Geophys. Res. Lett. 47, e2020GL088101 (2020).

    ADS 

    Google Scholar 

  • 7.

    Hirsch, E. & Koren, I. Record-breaking aerosol levels explained by smoke injection into the stratosphere. Science 371, 1269–1274 (2021).

    ADS 
    CAS 

    Google Scholar 

  • 8.

    Schlosser, J. S. et al. Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: Dust emissions, chloride depletion, and most enhanced aerosol constituents. J. Geophys. Res. Atmos. 122, 8951–8966 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Guieu, C., Bonnet, S., Wagener, T. & Loÿe-Pilot, M.-D. Biomass burning as a source of dissolved iron to the open ocean? Geophys. Res. Lett. 32, L19608 (2005).

    ADS 

    Google Scholar 

  • 11.

    Ito, A. Mega fire emissions in Siberia: potential supply of bioavailable iron from forests to the ocean. Biogeosciences 8, 1679–1697 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J. & Hantoro, W. S. Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires. Science 301, 952–955 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Ito, A. et al. Pyrogenic iron: the missing link to high iron solubility in aerosols. Sci. Adv. 5, eaau7671 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Jia, G. et al. in Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems Ch. 2 (IPCC, in the press).

  • 15.

    Jiang, Y. et al. Impacts of wildfire aerosols on global energy budget and climate: the role of climate feedbacks. J. Clim. 33, 3351–3366 (2020).

    ADS 

    Google Scholar 

  • 16.

    Bowman, D. et al. Wildfires: Australia needs national monitoring agency. Nature 584, 188–191 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    New WWF report: 3 billion animals impacted by Australia’s bushfire crisis. WWF https://www.wwf.org.au/news/news/2020/3-billion-animals-impacted-by-australia-bushfire-crisis#gs.ebzve2 (2020).

  • 18.

    van der Velde, I. R. et al. Vast CO2 release from Australian fires in 2019–2020 constrained by satellite. Nature https://doi.org/10.1038/s41586-021-03712-y (2021).

  • 19.

    National Greenhouse Gas Inventory Report: 2018 (Australian Government, 2020); https://www.industry.gov.au/data-and-publications/national-greenhouse-gas-inventory-report-2018.

  • 20.

    Mahowald, N. M. et al. Aerosol impacts on climate and biogeochemistry. Annu. Rev. Environ. Res. 36, 45–74 (2011).

    Google Scholar 

  • 21.

    Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).

    ADS 
    CAS 

    Google Scholar 

  • 22.

    Jickells, T. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Martin, J. H. Glacial‐interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).

    ADS 

    Google Scholar 

  • 24.

    Tagliabue, A. et al. Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nat. Geosci. 7, 314–320 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Cassar, N. et al. The Southern Ocean biological response to aeolian iron deposition. Science 317, 1067–1070 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Gabric, A. J., Cropp, R., Ayers, G. P., McTainsh, G. & Braddock, R. Coupling between cycles of phytoplankton biomass and aerosol optical depth as derived from SeaWiFS time series in the Subantarctic Southern Ocean. Geophys. Res. Lett. 29, 16-11–16-14 (2002).

    Google Scholar 

  • 27.

    Ardyna, M. et al. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nat. Commun. 10, 2451 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Duprat, L. P. A. M., Bigg, G. R. & Wilton, D. J. Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs. Nat. Geosci. 9, 219–221 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 29.

    Bixby, R. J. et al. Fire effects on aquatic ecosystems: an assessment of the current state of the science. Freshwater Sci. 34, 1340–1350 (2015).

    Google Scholar 

  • 30.

    Inness, A. et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 19, 3515–3556 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Shafeeque, M., Sathyendranath, S., George, G., Balchand, A. N. & Platt, T. Comparison of seasonal cycles of phytoplankton chlorophyll, aerosols, winds and sea-surface temperature off Somalia. Front. Marine Sci. 4, 384 (2017).

    Google Scholar 

  • 32.

    Cassar, N. et al. The influence of iron and light on net community production in the Subantarctic and Polar Frontal zones. Biogeosciences 8, 227–237 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 33.

    Mitchell, B. G. & Holm-Hansen, O. Observations of modeling of the Antartic phytoplankton crop in relation to mixing depth. Deep Sea Res. Part A 38, 981–1007 (1991).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Longo, A. F. et al. Influence of atmospheric processes on the solubility and composition of iron in Saharan dust. Environ. Sci. Technol. 50, 6912–6920 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Meskhidze, N., Nenes, A., Chameides, W. L., Luo, C. & Mahowald, N. Atlantic Southern Ocean productivity: fertilization from above or below? Global Biogeochem. Cycles 21, GB2006 (2007).

    ADS 

    Google Scholar 

  • 36.

    Sarmiento, J. L., Slater, R. D., Dunne, J., Gnanadesikan, A. & Hiscock, M. R. Efficiency of small scale carbon mitigation by patch iron fertilization. Biogeosciences 7, 3593–3624 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Brzezinski, M. A., Jones, J. L. & Demarest, M. S. Control of silica production by iron and silicic acid during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 50, 810–824 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 38.

    Lovenduski, N. S. & Gruber, N. Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett. 32, L11603 (2005).

    ADS 

    Google Scholar 

  • 39.

    Cai, W., Cowan, T. & Raupach, M. Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys. Res. Lett. 36, L19710 (2009).

    ADS 

    Google Scholar 

  • 40.

    Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Climate Change 7, 906–911 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 41.

    Lim, E.-P. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 12, 896–901 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 42.

    Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Cropp, R. A. et al. The likelihood of observing dust-stimulated phytoplankton growth in waters proximal to the Australian continent. J. Mar. Syst. 117–118, 43–52 (2013).

    Google Scholar 

  • 44.

    Hamilton, D. S. et al. Impact of changes to the atmospheric soluble iron deposition flux on ocean biogeochemical cycles in the anthropocene. Global Biogeochem. Cycles 34, e2019GB006448 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 45.

    Duce, R. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Han, Y. et al. Asian inland wildfires driven by glacial-interglacial climate change. Proc. Natl Acad. Sci. USA 117, 5184–5189 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Sys. Sci. Data 9, 697–720 (2017).

    ADS 

    Google Scholar 

  • 48.

    Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I 42, 641–673 (1995).

    Google Scholar 

  • 49.

    Sathyendranath, S. et al. An ocean-colour time series for use in climate studies: the experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors 19, 4285 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 50.

    Morcrette, J.-J. et al. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: forward modeling. J. Geophys. Res. Atmospheres 114, D06206 (2009).

    ADS 

    Google Scholar 

  • 51.

    Levy, R. C. et al. Exploring systematic offsets between aerosol products from the two MODIS sensors. Atmos. Meas. Tech. 11, 4073–4092 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Benedetti, A. et al. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation. J. Geophys. Res. 114, D13 (2009).

    Google Scholar 

  • 53.

    Kaiser, J. W. et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9, 527–554 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 54.

    Y. Bennouna et al. Validation Report of the CAMS Global Reanalysis of Aerosols and Reactive Gases, Years 2003–2019 (Copernicus Atmosphere Monitoring Service, 2020).

  • 55.

    Ito, A. et al. Evaluation of aerosol iron solubility over Australian coastal regions based on inverse modeling: implications of bushfires on bioaccessible iron concentrations in the Southern Hemisphere. Prog. Earth Planet. Sci. 7, 42 (2020).

    ADS 

    Google Scholar 

  • 56.

    Khaykin, S. et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 1, 22 (2020).

  • 57.

    Haëntjens, N., Boss, E. & Talley, L. D. Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats. J. Geophys. Res. Oceans 122, 6583–6593 (2017).

    ADS 

    Google Scholar 

  • 58.

    Boss, E. et al. The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; contribution of the Tara Oceans expedition. Methods Oceanogr. 7, 52–62 (2013).

    Google Scholar 

  • 59.

    de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology. J. Geophys. Res. Oceans 109, C12003 (2004).

    ADS 

    Google Scholar 

  • 60.

    Dong, S., Sprintall, J., Gille, S. T. & Talley, L. Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res. Oceans 113, C06013 (2008).

    ADS 

    Google Scholar 

  • 61.

    Cutter, G. A. et al. Sampling and Sample-handling Protocols for GEOTRACES Cruises, version 3.0 (2017).

    Google Scholar 

  • 62.

    Morton, P. L. et al. Methods for the sampling and analysis of marine aerosols: results from the 2008 GEOTRACES aerosol intercalibration experiment. Limnol. Oceanogr. Methods 11, 62–78 (2013).

    CAS 

    Google Scholar 

  • 63.

    Perron, M. M. G. et al. Assessment of leaching protocols to determine the solubility of trace metals in aerosols. Talanta 208, 120377 (2020).

    CAS 

    Google Scholar 

  • 64.

    Shelley, R. U., Landing, W. M., Ussher, S. J., Planquette, H. & Sarthou, G. Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach. Biogeosciences 15, 2271–2288 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 65.

    Sanz Rodriguez, E. et al. Analysis of levoglucosan and its isomers in atmospheric samples by ion chromatography with electrospray lithium cationisation—triple quadrupole tandem mass spectrometry. J. Chromatogr. A 1610, 460557 (2020).

    CAS 

    Google Scholar 

  • 66.

    McLennan, S. M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2, 1201 (2001).

    Google Scholar 

  • 67.

    Shelley, R. U. et al. Quantification of trace element atmospheric deposition fluxes to the Atlantic Ocean (>40°N; GEOVIDE, GEOTRACES GA01) during spring 2014. Deep Sea Res. Part I 119, 34–49 (2017).

    CAS 

    Google Scholar 

  • 68.

    Sholkovitz, E. R., Sedwick, P. N., Church, T. M., Baker, A. R. & Powell, C. F. Fractional solubility of aerosol iron: synthesis of a global-scale data set. Geochim. Cosmochim. Acta 89, 173–189 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 69.

    Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2016).

    ADS 

    Google Scholar 

  • 70.

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    ADS 

    Google Scholar 

  • 71.

    Tatlhego, M., Bhattachan, A., Okin, G. S. & D’Odorico, P. Mapping areas of the Southern Ocean where productivity likely depends on dust‐delivered Iron. J. Geophys. Res. Atmospheres 125, e2019JD030926 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 72.

    Stein, A. F., Rolph, G. D., Draxler, R. R., Stunder, B. & Ruminski, M. Verification of the NOAA smoke forecasting system: model sensitivity to the injection height. Weather Forecast. 24, 379–394 (2009).

    ADS 

    Google Scholar 

  • 73.

    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite‐based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    ADS 
    CAS 

    Google Scholar 

  • 74.

    Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cycles 19, GB1006 (2005).

    ADS 

    Google Scholar 

  • 75.

    Westberry, T., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem. Cycles 22, GB2024 (2008).

    ADS 

    Google Scholar 

  • 76.

    Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Global Biogeochem. Cycles 30, 1756–1777 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 77.

    Laws, E. A., D’Sa, E. & Naik, P. Simple equations to estimate ratios of new or export production to total production from satellite‐derived estimates of sea surface temperature and primary production. Limnol. Oceanogr. Methods 9, 593–601 (2011).

    Google Scholar 

  • 78.

    Dunne, J. P., Armstrong, R. A., Gnanadesikan, A. & Sarmiento, J. L. Empirical and mechanistic models for the particle export ratio. Global Biogeochem. Cycles 19, GB4026 (2005).

    ADS 

    Google Scholar 

  • 79.

    Li, Z. & Cassar, N. Satellite estimates of net community production based on O2/Ar observations and comparison to other estimates. Global Biogeochem. Cycles 30, 735–752 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 80.

    Siegel, D. A. et al. Global assessment of ocean carbon export by combining satellite observations and food‐web models. Global Biogeochem. Cycles 28, 181–196 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 81.

    Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Climate 16, 4134–4143 (2003).

    ADS 

    Google Scholar 

  • 82.

    Saji, N. H. & Yamagata, T. Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Res. 25, 151–169 (2003).

    ADS 

    Google Scholar 

  • Be the first to comment

    Leave a Reply